Q.
The domain of the function f(x)=sinx​1​ +3sinx​+log10​x2−10x+24x−5​ is
Solution:
The domain of 3sinx​ is R.
The domain of sinx​1​={x:sinx>0}
={(2kπ,(2k+1)π):k∈I}
The domain of log10​x2−10x+24x−5​=log10​(x−6)(x−4)x−5​
={x:xî€ =5,x>5,x>6,x>4 orÂ
=(4,5)∩(6,∞)
Thus the domain of f(x)
={(2kπ,(2k+1)π):k∈I}∩{(4,5)∪(6,∞)}
={(2kπ,(2k+1)π):k∈N}
(since (4,5) does not intersect {(2kπ,2k+1)π:k∈I} )