Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The domain of f(x) = cot-1 (x /√ x2-[x2]) x ∈ R is
Q. The domain of
f
(
x
)
=
cot
−
1
x
2
−
[
x
2
]
x
x
∈
R is
2007
208
Inverse Trigonometric Functions
Report Error
A
R
10%
B
R
−
{
0
}
32%
C
R
−
{
±
,
∈
N
}
33%
D
none of these
25%
Solution:
Domain of
cot
−
1
x is R and
x
2
−
[
x
2
]
x
is defined if
x
2
=
[(
x
2
)]
. i,e.,
x
2
is not integer
(
∵
x
2
≥
[
x
2
])
Hence
x
2
=
non-negative integer i.e., 0 or
+
v
e
integer.
Hence domain = R
−
{(
n
:
n
≥
0
,
n
∈
Z
)}