Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The domain and range of the relation R given by R= (x, y): y=x+(6/x); where x, y ∈ N and x < 6 is
Q. The domain and range of the relation
R
given by
R
=
{
(
x
,
y
)
:
y
=
x
+
x
6
;
where
x
,
y
∈
N
and
x
<
6
}
is
3112
193
Relations and Functions
Report Error
A
{
1
,
2
,
3
}
,
{
7
,
5
}
36%
B
{
1
,
2
}
,
{
7
,
5
}
26%
C
{
2
,
3
}
,
{
5
}
21%
D
None of these
18%
Solution:
When
x
=
1
,
y
=
7
∈
N
, so
(
1
,
7
)
∈
R
.
When,
x
=
2
,
y
=
2
+
3
=
5
∈
N
, so
(
2
,
5
)
∈
R
.
Again for
x
=
3
,
y
=
3
+
2
=
5
∈
N
,
(
3
,
5
)
∈
R
.
Similarly for
x
=
4
,
y
=
4
+
4
6
∈
/
N
for
x
=
5
,
y
=
5
+
5
6
∈
/
N
.
Thus
R
=
{
(
1
,
7
)
,
(
2
,
5
)
,
(
3
,
5
)
}
,
∴
Domain of
R
=
{
1
,
2
,
3
}
and Range of
R
=
{
7
,
5
}