Q.
The domain and range of the function f(x)=cosec−1log1−2secx3−4secx2 are respectively
156
140
Relations and Functions - Part 2
Report Error
Solution:
note that, log2secx−14secx−32≥1 and 1<2secx−14secx−3≤2 But 2secx−14secx−3=2 as in this case −3=−2 (not possible) now 2secx−14secx−3−2<0 2secx−1−1<0⇒2secx−11>0 or 2secx−1>0 ⇒secx>1/2 which is alway True (if secx=1 then base is 1⇒x=0 ) and 2secx−14secx−3−1>0 2secx−12secx−2>0⇒2secx−1secx−1>0 ⇒secx>1 which is always true ....(2) from (1) and (2) x must lies in 1st or 4th quad. except zero −2π<x<2π−{0} or 2nπ−2π<x<2nπ+2π−{2nπ} range is obv. (0,2π)