We have, f(x)=1−x21
Clearly, f(x) is defined for all x∈R except for which x2−1=0
i.e., x=±1.
Hence, Domain of f=R−{−1,1}.
Let f(x)=y. Then, 1−x21=y ⇒1−x2=y1 ⇒x2=1−y1=yy−1 ⇒x=±y−0y−1
Clearly, x will take real values, if y−0y−1≤0
⇒y<0 or y≥1 ⇒y∈(−∞,0)∪[1,∞)
Hence, range (f)=(−∞,0)∪[1,∞)