Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The divisors of the determinant D=|(a2+b2/c) c c a (b2+c2/a) a b b (c2+a2/b)| is (a, b, c ∈ R)
Q. The divisors of the determinant
D
=
∣
∣
c
a
2
+
b
2
a
b
c
a
b
2
+
c
2
b
c
a
b
c
2
+
a
2
∣
∣
is
(
a
,
b
,
c
∈
R
)
169
86
Determinants
Report Error
A
abc
B
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
C
a
3
+
b
3
c
3
D
(
a
2
+
b
2
+
c
2
)
(
a
+
b
+
c
)
Solution:
ab
c
1
∣
∣
a
2
+
b
2
a
2
b
2
c
2
b
2
+
c
2
b
2
c
2
a
2
c
2
+
a
2
∣
∣
use
R
1
→
R
1
−
(
R
2
+
R
3
)
ab
c
1
∣
∣
0
a
2
b
2
−
2
b
2
b
2
+
c
2
b
2
−
2
a
2
a
2
c
2
+
a
2
∣
∣
R
2
→
R
2
+
1/2
R
1
and
R
3
→
R
3
+
1/2
R
1
ab
c
1
∣
∣
0
a
2
b
2
−
2
b
2
c
2
0
−
2
a
2
0
c
2
∣
∣
ab
c
1
[
2
b
2
(
a
2
c
2
)
−
2
a
2
(
−
b
2
c
2
)
]
=
ab
c
4
a
2
b
2
c
2
=
4
ab
c