Given, x2=2t2+6t+1…(i)
Differentiating Eq. (i) w.r.t. t, we get 2xdtdx=4t+t 2xv=4t+6(∵v=dtdx) xv=2t+3…(ii)
Now, again differentiating Eq. (ii) w.r.t. t, we get xdtdv+vdtdx=2 x⋅a+v⋅v=2(∵a=dtdv and v=dtdx) xa+v2=2…(iii)
Here, v2=x24t2+12t+9 v2=x22(2t2+6t+1)+7 v2=x22t2+7…(iv)
Put the value of v2 in Eq. (iii) from Eq. (iv), we get xa+x22x2+7=2 x3a+2x2+7=2x2 x3a+7=0 x3a=−7 a=x3−7
Hence, the acceleration varies with x−3.