Given, point P(2,3,4) and line −1x−1=2y−0=3z+1=r (say) ..(i)
Then, coordinates of any point N on the line (i) are (−r+1,2r,3r−1) ..(ii)
Let N be the foot of the perpendicular to line (i). ∴ Direction ratios of PN are (−r+1−2,2r−3,3r−1−4) =(r−1,2r−3,3r−5) ..(iii) ∵ PN is perpendicular to line (i). ∴ Using the condition, a1a2+b1b2+c1c2=0 ⇒−1(−r−1)+2(2r−3)+3(3r−5)=0 ⇒r+1+4r−6+9r−15=0 ⇒14r=20⇒r=1420=710
Then, from Eq. (ii), we get N=(−710+1,720,730−1)=(73,720,723)
Now, perpendicular distance PN=(−73−2)2+(720−3)2+(723−4)2 =71289+1+25=7315=7335