Let (2x−3=3y−3=6z+5=t) ⇒(x,y,z)=(2t+3,3t+3,6t−5) ∴ d.r.’s of the line perpendicular to
(2x−3=3y−3=6z+5) and
joining (2t+3,3t+3,6t−5)
and (1,2,−4) is (2t+2,3t+1,6t−1) ∴2(2t+2)+3(3t+1)+6(6t−1)=0 ⇒t=−1/49 ∴ Distance =(2t+2)2+(3t+1)2+(6t−1)2 =49t2+2t+6 =491−492+6=7293