y=x4+3x2+2x…(i) y=2x−1…(ii)
Let P(x,y) be a point on (i) ∴S= Distance of P from (ii)=5∣2x−1−y∣ =5∣2x−1−x4−3x2−2x∣ (∵P lies on (i)) =5∣−x4−3x2−1∣ =5x4+3x2+1 dxdS=54x3+6x, dx2d2S=512x3+6 ∴S is min. when dxdS=0
i.e., 4x3+6x=0 ⇒x=0 (Real) dx2d2S∣∣x=0=56>0
Hence, min. value of S is 51.