Distance PM = ? P(α,β,γ)=(1,6,3) M(x,y,z)=(λ,2λ+1,3λ+2)
dr’s of PM are (λ−1,2λ−5,3λ−1)
Dr’s of line are (1,2,3)
Now, PM⊥AB ∴λ=1 ∴M(1,3,5) ∴P(1,6,3),M(1,3,5) ∴PM=(6−3)2+(3−5)2=13 Short Cut Method :
Using fact : The ⊥ distance from (α,β,γ) on the line lx−x1=my−y1=nz−z1 is given by (α−x1)2+(β−y1)2+(γ−z1)2−{l(α−x1)+m(β−y1)+n(γ−z1)}2
Now, (α,β,γ)=(1,6,3), (x1,y1,z1)=(0,1,2), (l,m,n)=(141,142,143) ∴ Required distance =(1−0)2+(6−1)2+(3−2)2−[141(1+2(5)+3(1))]2 =27−14=13