Given equation of planes are r⋅(2i^−3j^+6k^)−5=0
or 2x−3y+6z−5=0…(i)
and r⋅(6i^−9j^+18k^)+20=0
or 6x−9y+18z+20=0
Let (x1,y1,z1) is a point lie in the plane (i) ∴2x1−3y1+6z1−5=0
Now distance from (x1,y1,z1) to the plane 6x−9y+18z+20=0 is 62+(−9)2+(18)2∣6x1−9y1+18z1+20∣
(Using distance P\left(x_{1}, y_{1}, z_{1}\right) to plane ax+by+cz+d=0)) =21∣3(2x1−3y1+6z1−5)+15+20∣ =210+15+20=2135=35 Short Cut Method :
Using fact : Distance between the parallel planes r⋅n=d1 and r⋅n=d2 ∴d=∣n∣∣d1−d2∣ =∣6i^+(−9)j^+18k^∣20+15=2135=35