9x2−6xy+y2+18x−6y+8=0 ⇒((3x2)−2×(3x)×y+y2)+6(3x−y)+8=0 ⇒(3x−y)2+6(3x−y)+8=0
Let 3x−y=z ∴z2+6z+8=0 ⇒z2+4z+2z+8=0 ⇒z(z+4)+2(z+4)=0 ⇒(z+2)(z+4)=0 ⇒z=−2,z=−4 3x−y+2=0...(i) or 3x−y+4=0
If P1 be the distance of line (i) from the origin, then P1=9+12=102
Also, if P2 be the distance of line \left(ii\right) from the origin,then P2=104
So, distance between lines P=P2−P1=104−102=102