Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The distance between the foci of the hyperbola x2 - 3y2 - 4x - 6y -11 = 0 is
Q. The distance between the foci of the hyperbola
x
2
−
3
y
2
−
4
x
−
6
y
−
11
=
0
is
3349
178
BITSAT
BITSAT 2008
Report Error
A
4
4%
B
6
32%
C
8
60%
D
10
4%
Solution:
x
2
−
3
y
2
−
4
x
−
6
y
−
11
=
0
⇒
(
x
2
−
4
x
)
−
3
(
y
2
+
2
y
)
=
11
⇒
(
x
2
−
4
x
+
4
)
−
3
(
y
2
+
2
y
+
1
)
=
11
+
1
⇒
12
(
x
−
2
)
2
−
4
(
y
+
1
)
2
=
1
⇒
a
2
=
12
,
b
2
=
4
∴
e
=
1
+
a
2
b
2
=
3
2
Therefore distance between focii is
=
2
a
e
=
2
×
2
3
×
3
2
=
8