The given points are A(1,2,−3) and B(−1,−2,1).
i.e.,x1=1,y1=2,z1=−3
and x2=−1,y2=−2,z2=1
Vector AB=(x2−x1)i^+(y2−y1)j^+(z2−z1)k^ =(−1−1)i^+(−2−2)j^+[1−(−3)]k^ =−2i^−4j^+4k^
Comparing with X=xi^+yj^+zk^, we get x=−2,y=−4,z=4
Now, magnitude ∣AB∣=x2+y2+z2=(−2)2+(−4)2+42 =4+16+16=36=6
Direction cosines of a vector X=xi^+yj^+zk^ are ∣X∣x,∣X∣y,∣X∣z ∴ Direction cosines of AB are 6−2,6−4,64 or −31,−32,32.