Let b1=i^+2j^+k^ and b2=4i^+5j^−3k^
Normal vector to plane b1×b2=∣∣i^14j^25k^1−3∣∣ =i^(−6−5)−j^(−3−4)+k^(5−8) =−11i^+7j^−3k^ ∴ Direction cosines of normal to the plane =(−11)2+72+(−3)2−11,(−11)2+72+(−3)27 (−11)2+72+(−3)2−3=179−11,1797,179−3