Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The direction cosines of the normal to the plane containing the lines having direction ratios $1,2,1$ and $4,5,-3$ are

TS EAMCET 2020

Solution:

Let $b_{1}=\hat{i}+2 \hat{j}+\hat{k}$ and $b_{2}=4 \hat{i}+5 \hat{j}-3 \hat{k}$
Normal vector to plane
$b_{1} \times b_{2}=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ 4 & 5 & -3\end{vmatrix}$
$=\hat{i}(-6-5)-\hat{j}(-3-4)+\hat{k}(5-8)$
$=-11 \hat{i}+7 \hat{j}-3 \hat{k}$
$\therefore $ Direction cosines of normal to the plane
$=\frac{-11}{\sqrt{(-11)^{2}+7^{2}+(-3)^{2}}}, \frac{7}{\sqrt{(-11)^{2}+7^{2}+(-3)^{2}}}$
$\frac{-3}{\sqrt{(-11)^{2}+7^{2}+(-3)^{2}}}=\frac{-11}{\sqrt{179}}, \frac{7}{\sqrt{179}}, \frac{-3}{\sqrt{179}}$