Given, (x−h)2+(y−k)2=a2...(i) ⇒2(x−h)+2(y−k)dxdy=0 ⇒(x−h)+(y−k)dxdy=0...(ii)
Again differentiating (y−k)=−d2y/dx21+(dxdy)2
Putting in Eq. (ii), we get x−h=−(y−k)dxdy =dx2d2y[1+(dxdy)2]dxdy
Putting in Eq. (i), we get (dx2d2y)2[1+(dxdy)2]2(dxdy)2 +(dx2d2y)2[1+(dxdy)2]2=a2 ⇒[1+(dxdy)2]2[(dxdy)2+1]=a2(dx2d2y)2 ⇒[1+(dxdy)2]3=a2(dx2d2y)2