Given that, y=axcos(x1+b)
On differentiating w.r.t. x, we get y1=a[cos(x1+b)−xsin(x1+b)(−x21)] ⇒y1=a[cos(x1+b)+x1sin(x1+b)]
Again differentiating, we get y2=a[−sin(x1+b)(−x21)−x21sin(x1+b) −x31cos(x1+b)] ⇒y2=−x4axcos(x1+b) ⇒x4y2+y=0