Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The differential equation satisfied by the family of curve $y=a x \cos \left(\frac{1}{x}+b\right)$, where $a, b$ are parameters, is

ManipalManipal 2011

Solution:

Given that, $y=a x \cos \left(\frac{1}{x}+b\right)$
On differentiating w.r.t. $x$, we get
$y_{1}=a\left[\cos \left(\frac{1}{x}+b\right)-x \sin \left(\frac{1}{x}+b\right)\left(-\frac{1}{x^{2}}\right)\right]$
$\Rightarrow y_{1}=a\left[\cos \left(\frac{1}{x}+b\right)+\frac{1}{x} \sin \left(\frac{1}{x}+b\right)\right]$
Again differentiating, we get
$y_{2}=a\left[-\sin \left(\frac{1}{x}+b\right)\left(-\frac{1}{x^{2}}\right)-\frac{1}{x^{2}} \sin \left(\frac{1}{x}+b\right)\right.$
$\left.-\frac{1}{x^{3}} \cos \left(\frac{1}{x}+b\right)\right]$
$\Rightarrow y_{2}=-\frac{a x}{x^{4}} \cos \left(\frac{1}{x}+b\right)$
$\Rightarrow x^{4} y_{2}+y=0$