Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The differential equation representing the family of hyperbolas a2 x2-b2 y2=c2 is
Q. The differential equation representing the family of hyperbolas
a
2
x
2
−
b
2
y
2
=
c
2
is
2919
266
Differential Equations
Report Error
A
y
′
y
′′
+
y
y
′
=
x
1
B
y
′
y
′′
+
y
y
′
=
x
2
1
C
y
′
y
′′
−
y
y
′
=
x
1
D
y
′
y
′′
=
y
′
y
−
x
1
Solution:
Differentiating the equation twice w.r.t.
x
,
we get
2
a
2
x
−
2
b
2
y
y
′
=
0
,
a
2
−
b
2
(
y
′
2
+
y
y
′′
)
=
0
Eliminating
a
2
and
b
2
,
we get the differential equation
y
′
y
′′
+
y
y
′
=
x
1