y2=2c(x+c)…(i)
Differentiating w.r.t. x, 2ydxdy=2c ⇒c=ydxdy
On putting this value in Eq. (i), y2=2x⋅ydxdy+2ydxdyydxdy 2ydxdyydxdy=y2−2xydxdy
Squaring on both sides, 4y2(dxdy)2(y⋅dxdy)={y2−2xydxdy}2 4y3(dxdy)3=y4+4x2y2(dxdy)2−2xy3(dxdy) 4y(dxdy)3−4x2(dxdy)2+2xy(dxdy)−y2=0
Hence, order →1, degree →3