Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The differential equation of the family y = aex + bx ex + cx2-ex of curves, where a, b, c are arbitary constants is :
Q. The differential equation of the family
y
=
a
e
x
+
b
x
e
x
+
c
x
2
−
e
x
of curves, where
a
,
b
,
c
are arbitary constants is :
1859
229
Differential Equations
Report Error
A
y
′
"
+
3
y
"
+
3/
+
y
=
0
18%
B
y
"
+
3
y
"
−
3
y
′
−
y
=
0
35%
C
y
′′′
−
3
y
"
−
3
y
′
+
y
= 0
41%
D
y
"
+
3
y
"
+
3
y
′
−
y
=
0.
6%
Solution:
y
=
a
e
x
+
b
x
e
x
+
c
x
2
e
x
y
′
=
a
e
x
+
b
x
e
x
+
b
e
x
+
c
(
x
2
e
x
+
2
x
e
x
)
=
a
e
x
+
6
(
1
+
x
)
e
x
+
c
x
e
x
(
x
+
2
)
y
′′
=
a
e
x
+
b
(
1
+
x
)
e
x
+
b
e
x
+
c
x
e
x
c
x
(
x
+
2
)
e
x
+
c
(
x
+
2
)
e
x
=
a
e
x
+
b
(
2
+
x
)
e
x
+
c
x
e
x
+
c
(
x
+
2
)
(
x
+
1
)
e
x
+
c
e
x
(
x
+
2
+
x
+
1
)
+
c
(
x
+
2
)
(
x
+
1
)
s
e
x
=
a
e
x
+
6
(
3
+
x
)
+
c
(
x
+
1
)
e
x
+
c
e
x
(
x
+
2
)
(
x
+
1
)
(
2
x
+
3
)
y
′′′
−
3
y
′′
−
3
y
′
−
y
=
a
e
x
+
36
+
b
x
e
x
+
c
(
x
+
1
)
e
x
+
c
e
x
(
x
2
+
5
x
+
5
)
−
3
a
e
x
−
3
b
(
2
+
x
)
e
x
−
3
b
x
e
x
−
3
c
(
x
+
2
)
(
x
+
1
)
e
x
+
3
a
e
x
+
3
b
(
1
+
x
)
e
x
+
3
c
x
e
x
(
x
+
2
)
−
a
e
x
−
b
x
e
x
−
c
x
2
e
x
=
0
.