The given circle is, x2 + y2 = a2
Differentiating with respect to x, we get 2x+2ydxdy=0⇒x+ydxdy=0 ⇒(x+ydxdy)2=0(Squaring both sides) ⇒x2+2xydxdy+y2(dxdy)2=0 ⇒−2xydxdy=x2+y2(dxdy)2 y2+x2(dxdy)2−2xydxdy =x2+y2+x2(dxdy)2+y2(dxdy)2 (Adding y2+x2(dxdy)2 both sides) ⇒(y−xdxdy)2=a2[1+(dxdy)2] (∵x2+y2=a2)