Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
The differential equation of a particle executing simple harmonic motion along y-axis is :
Q. The differential equation of a particle executing simple harmonic motion along
y
-axis is :
1598
191
J & K CET
J & K CET 2001
Report Error
A
d
t
2
d
2
y
+
ω
2
y
=
0
B
d
t
2
d
2
y
+
ω
2
y
2
=
0
C
d
t
2
d
2
y
−
ω
2
y
=
0
D
d
t
2
d
2
y
+
ω
y
=
0
Solution:
For a particle executing SHM, restoring force
(
F
)
is given by
F
=
ma
=
m
d
t
d
v
=
m
d
t
2
d
2
y
=
−
k
y
⇒
d
t
2
d
2
y
+
m
k
y
=
0
where
m
k
=
ω
2
is the characteristic angular frequency of the system.
Hence, equation becomes
d
t
2
d
2
y
+
ω
2
y
=
0