Given, y=ex(acosx+bcosx)…(i)
Differentiating w.r.t. x, we get dxdy=ex(acosx+bsinx)+ex(−asinx+bcosx) ⇒dxdy=y+ex(−asinx+bcosx)… (ii) [by Eq. (i)]
Again differentiating w.r.t. x, we get dx2d2y=dxdy+ex(−acosx−bsinx) ⇒dx2d2y=dxdy−ex(acosx+bsinx)+dxdy−y
[By Eq. (ii) ] ⇒dx2d2y=2dxdy−y−ex(acosx+bsinx) ⇒dx2d2y=2dxdy−y−y[ by Eq.(i)] ⇒dx2d2y=2dxdy−2y ⇒dx2d2y+2y−2dxdy=0