f′(x)=2cos2x−1 ⇒f′(x)=0 ⇒2cos2x−1=0 ⇒cos2x=21 ⇒2x=3π,−3π ⇒x=6π,−6π
Now, f′(−2π)=2π, f′(2π)=−2π f′(−6π)=−23+6π and f′(6π)=23−6π
Clearly 23−6π is the greatest value of f(x) and its least value =−2π.
Hence the reqd. difference =23−6π−(−2π)=23+3π