Let Δ=∣∣x−sinθcosθsinθ−x1cosθ1x∣∣
By expanding along first row, we get Δ=x∣∣−x11x∣∣−sinθ∣∣−sinθcosθ1x∣∣+cosθ∣∣−sinθcosθ−x1∣∣ =x(−x2−1)−sinθ(−xsinθ−cosθ)+cosθ(−sinθ+xcosθ) =−x3−x+xsin2θ+sinθcosθ−sinθcosθ+xcos2θ =−x3−x+x(sin2θ+cos2θ)=−x3−x+x (∵sin2θ+cosθ2=1) =−x3
Hence, Δ is independent of θ.