Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The determinant Δ=|λ a λ2+a2 1 λ b λ2+b2 1 λ c λ2+c2 1| equals
Q. The determinant
Δ
=
∣
∣
λa
λb
λ
c
λ
2
+
a
2
λ
2
+
b
2
λ
2
+
c
2
1
1
1
∣
∣
equals
85
138
Determinants
Report Error
A
λ
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
B
λ
(
a
2
+
b
2
+
c
2
)
C
λ
(
a
+
b
+
c
)
D
λ
2
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
Solution:
Using
C
2
→
C
2
−
λ
2
C
3
, we can write
Δ
=
λ
∣
∣
a
b
c
a
2
b
2
c
2
1
1
1
∣
∣
Using
R
3
→
R
3
−
R
2
,
R
2
→
R
2
−
R
1
, we get
Δ
=
λ
∣
∣
a
b
−
a
c
−
b
a
2
b
2
−
a
2
c
2
−
b
2
1
0
0
∣
∣
=
λ
(
b
−
a
)
(
c
−
b
)
∣
∣
1
1
b
+
a
c
+
b
∣
∣
=
λ
(
b
−
a
)
(
c
−
b
)
(
c
−
a
)
=
λ
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)