Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The determinant D=|1 x x2 x2 1 x x x2 1| is equal to
Q. The determinant
D
=
∣
∣
1
x
2
x
x
1
x
2
x
2
x
1
∣
∣
is equal to
192
99
Determinants
Report Error
A
(
1
−
x
3
)
2
B
(
1
−
x
2
)
3
C
(
x
−
x
2
)
3
D
none
Solution:
Using
C
1
→
C
1
+
C
2
+
C
3
D
=
(
1
+
x
+
x
2
)
∣
∣
1
1
1
x
1
x
2
x
2
x
1
∣
∣
=
(
x
2
+
x
+
1
)
∣
∣
0
0
1
x
−
1
−
(
x
2
−
1
)
x
2
x
(
x
−
1
)
x
−
1
1
∣
∣
=
(
x
−
1
)
2
(
x
2
+
x
+
1
)
∣
∣
0
0
1
1
−
(
x
+
1
)
x
2
x
1
x
∣
∣
=
(
x
−
1
)
2
(
x
2
+
x
+
1
)
[
1
+
x
(
x
+
1
)]
=
(
x
2
+
x
+
1
)
2
(
x
−
1
)
2
=
(
x
3
−
1
)
2