Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The determinant |a& b aα+b b& c& bα+c aα+b& bα+c& 0 | is equal to zero, then
Q. The determinant
∣
∣
a
b
a
α
+
b
b
c
b
α
+
c
a
α
+
b
b
α
+
c
0
∣
∣
is equal to zero, then
2397
195
Determinants
Report Error
A
a, b, c are in AP
24%
B
a, b, c are in GP
24%
C
a, b, c are in HP
12%
D
(
x
−
α
)
is a factor of
a
x
2
+
2
b
x
+
c
41%
Solution:
Given,
∣
∣
a
b
a
α
+
b
b
c
b
α
+
c
a
α
+
b
ba
+
c
0
∣
∣
=
0
Applying
C
3
→
C
3
−
(
α
C
1
+
C
2
)
Given,
∣
∣
a
b
a
α
+
b
b
c
b
α
+
c
0
0
−
(
a
α
2
+
2
b
α
+
c
)
∣
∣
=
0
⇒
−
(
a
α
2
+
2
b
α
+
c
)
(
a
c
−
b
2
)
=
0
⇒
a
α
2
+
2
b
α
+
c
=
0
or
b
2
=
a
c
⇒
x
−
α
is a factor of
a
x
2
+
2
b
x
+
c
or
a
,
b
,
c
, are in GP.