The given determinant vanishes, i.e., ∣∣111(x−3)(x−4)(x−5)(x−3)2(x−4)2(x−5)2∣∣=0
Expanding along C1, we get (x−4)(x−5)2−(x−5)(x−4)2 −{(x−3)(x−5)2−(x−5)(x−3)2} +(x−3)(x−4)2−(x−4)(x−3)2=0 ⇒(x−4)(x−5)(x−5−x+4) −(x−3)(x−5)(x−5−x+3)+(x−3)(x−4)(x−4−x+3)=0 ⇒−(x−4)(x−5)+2(x−3)(x−5)−(x−3)(x−4) =0 ⇒−x2+9x−20+2x2−16x+30−x2+7x−12 =0 ⇒−32+30=0 ⇒−2=0
Which is not possible, hence no value of x satisfies the given condition.