It is given that, y=tan−1[1+sinx−1−sinx1+sinx+1−sinx] ∵1+sinx=sin22x+cos22x+2sin2xcos2x =∣∣cos2x+sin2x∣∣
and 1−sinx=sin22x+cos22x−2sin2xcos2x =∣∣cos2x−sin2x∣∣ ∴y=tan−1(cot2x)
when cos2x+sin2x and cos2x−sin2x=2π−2x are positive tan−1(tan2x)=2x,
when cos2x+sin2x is positive
and cos2x−sin2x is negative tan−1(tan2x)=2x, when cos2x+sin2x is negative
and cos2x−sin2x is positive tan−1(cot2x)=2π−2x,
when cos2x+sin2x and as cos2x−sin2x is negative.
So, dxdy=±21