Q.
The derivative of y=(1−x)(2−x)…(n−x) at x=1 is equal to
1884
238
Continuity and Differentiability
Report Error
Solution:
∵y=(1−x)(2−x)……(n−x)
Taking log on both sides, we get logy=log(1−x)+log(2−x)+...+log(n−x) y1dxdy=(1−x)1(−1)+(2−x)1(−1)+……+(n−x)1(−1) dxdy=−y[y[(2−x)(3−x)……(n−x)+……]] ∴(dxdy)x=1=1⋅2……(n−1)(−1) =(−1)(n−1)!