Let y=tan−1(x1+x2−1)
Putting x=tanθ, we get y=tan−1(tanθsecθ−1)=tan−1(tan2θ) =21tan−1x
On differentiating both sides w.r.t. x, we get dxdy=2(1+x2)1
and z=tan−1(1−2x22x1−x2)
Putting x=sinθ, we get z=tan−1(cos2θ2sinθcosθ)=tan−1(tan2θ) ⇒z=2θ=2sin−1x
On differentiating both sides w.r.t. x, we get dxdz=1−x22
Thus, dzdy=dz/dxdy/dx=4(1+x2)11−x2 ∴[dzdy]x=0=41