Q.
The derivative of the function f(x)=(cos)−1{131(2cosx−3sinx)}+(sin)−1{131(2cosx+3sinx)} with respect to 1+x2 at x=43 is ba then the value of a+b is equal to
Given, f(x)=(cos)−1{131(2cos(x)−3sin(x))+(sin)−1{131(2cos(x)+3sin(x))}}
or (cos)−1{132cos(x)−133sin(x)}+(sin)−1{132cos(x)+133sin(x)}
For simplifying f(x) , let us assume cos(θ)=132 and sin(θ)=133 . f(x)=(cos)−1{cos(θ)cos(x)−sin(θ)sin(x)}+(sin)−1{cos(θ)cos(x)+sin(θ)sin(x)}
As we know, cos(A)cos(B)−sin(A)sin(B)=cos(A+B) and cos(A)cos(B)+sin(A)sin(B)=cos(A−B) . ∴f(x)=(cos)−1{cos(θ+x)}+(sin)−1{cos(θ−x)}
As we know, (sin)−1(A)=2π−(cos)−1(A) . ∴f(x)=(cos)−1{cos(θ+x)}+2π−(cos)−1{cos(θ−x)}
Also, (cos)−1cos(A)=A.
Hence, f(x)=(θ+x)+2π−(θ−x) f(x)=θ+x+2π−θ+x f(x)=2x+2π..(i)
Let, t=1+x2...(ii)
We have to find the value of dtdf(x)
As f(x) is a function of x and t is also a function of x , ∴dtd(f(x)=dxdtdxd{f(x)}) dtdf(x)=dxd(f(x)×dtdx) ......(iii)
Differentiating equation (i) with respect to x we get, dxd{f(x)}=dxd(2x)+dxd(2π) dxd{f(x)}=2
Also differentiating equation (ii) with respect to x , dxdt=dxd(1+x2)=21+x21dxd(1+x2)=21+x22x=1+x2x
By equation (iii) , dtd(f(x)=2×x1+x2)
at x=43 ,dtd(f(x)=32×41+(43)2) dtd(f(x)=32×4×45) dtd(f(x)=310)