Let f=tan−1(x1+x2−1)
Put x=tanθ ⇒θ=tan−1x f=tan−1(tanθsecθ−1) f=tan−1(sinθ1−cosθ)=2θ f=2tan−1x ⇒dxdf=2(1+x2)1…(i)
Let g=tan−1(1−2x22x1−x2)
Put x=sinθ ⇒θ=sin−1x g=tan−1(1−2sin2θ2sinθcosθ) g=tan−1(tan2θ)=2θ g=2sin−1x dxdg=1−x22…(ii) dgdf=2(1+x2)121−x2
at x=21(dgdf)x=21=103