Given, dxd(eaxcosbx)=reaxcos(bx+α), then r=?
Let y=eax⋅cosbx
Let y=eax⋅cosbx dxdy=aeax⋅cosbx−beax⋅sinbx dxdy=eax(acosbx−bsinbx) a=rcosα<br/><br/>b=rsinα}...(i)
Then, dxdy=eax⋅r{cosbx⋅cosα−sinbx⋅sinα} dxdy=eax⋅rcos(bx+α)...(ii)
Where, tanα=ab⇒α=tan−1(ab)
and r2(cos2α+sin2α)=a2+b2 r2=a2+b2 r=a2+b2