Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The derivative of cot √x is
Q. The derivative of
cot
x
is
101
154
Limits and Derivatives
Report Error
A
2
x
−
s
i
n
2
x
3%
B
2
x
s
i
n
2
x
4%
C
2
x
−
cosec
2
x
81%
D
2
x
−
s
e
c
2
x
11%
Solution:
Let
f
(
x
)
=
cot
x
.
Then,
f
(
x
+
h
)
=
cot
x
+
h
∴
d
x
d
f
(
x
)
=
h
→
0
lim
h
f
(
x
+
h
)
−
f
(
x
)
⇒
d
x
d
f
(
x
)
=
h
→
0
lim
h
cot
x
+
h
−
cot
x
⇒
d
x
d
(
f
(
x
))
=
h
→
0
lim
h
sin
x
+
h
sin
x
−
sin
(
x
+
h
−
x
)
⇒
d
x
d
f
(
x
)
=
h
→
0
lim
[(
x
+
h
)
−
x
]
sin
x
+
h
sin
x
]
−
sin
(
x
+
h
−
x
)
⇒
d
x
d
f
(
x
)
=
h
→
0
lim
(
x
+
h
−
x
)
(
x
+
h
+
x
)
−
sin
(
x
+
h
−
x
)
x
sin
x
+
h
sin
x
⇒
d
x
d
f
(
x
)
=
h
→
0
lim
x
+
h
−
x
−
sin
(
x
+
h
−
x
)
×
h
→
0
lim
(
x
+
h
+
x
)
sin
x
+
h
sin
x
1
⇒
d
x
d
f
(
x
)
=
2
x
s
i
n
x
s
i
n
x
−
1
⇒
d
x
d
f
(
x
)
=
2
x
−
cosec
2
x