Q.
The derivative of cosec−1,(2x1−x21) with respect to 1−x2 is
2228
225
J & K CETJ & K CET 2011Continuity and Differentiability
Report Error
Solution:
Let u=cosec−1(2x1−x21)
and v=1−x2
Put x=sinθ,
Then, u=cosec−1{2sinθ.cosθ1}=cosec−1(cosec 2θ) u=2θ=2sin−1x ..(i)
and v=1−sin2θ=cosθ=1−x2 ..(ii)
Now, dxdu=1−x22
and dxdv=21−x2−2x=1−x2−x 0 ⇒dvdu=dv/dxdu/dx=−x/1−x22/1−x2=x−2