Q.
The denominator of a fraction exceeds the square of the numerator by 16, then the least value of the fraction is
2019
225
NTA AbhyasNTA Abhyas 2020Application of Derivatives
Report Error
Solution:
Let the numerator be x, then f(x)=x2+16x
On differentiating w.r.t. x, we get f′(x)=(x2+16)2(x2+16)⋅1−x(2x) =(x2+16)2x2+16−2x2=(x2+16)216−x2… (i)
Putting f′(x)=0 for maxima or minima, we get, 16−x2=0⇒x=4,−4
Again, on differentiating w.r.t. x, we get f′′(x)=(x2+16)4(x2+16)2−(−2x)−(16−x2)2(x2+16)2x
At x=4,f′′(x)<0 ∴f(x) is maximum at x=4
And at x=−4,f′′(x)>0⇒f(x) is minimum ∴ Least value of f(x)=16+16−4=−81