Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The curve y = xex has minimum value equal to
Q. The curve
y
=
x
e
x
has minimum value equal to
2080
229
BITSAT
BITSAT 2016
Report Error
A
−
e
1
29%
B
e
1
41%
C
-e
18%
D
e
12%
Solution:
Let
y
=
x
e
x
.
Differentiate both side w.r.t. ‘
x
’.
⇒
d
x
d
y
=
e
x
+
x
e
x
=
e
x
(
1
+
x
)
Put
d
x
d
y
=
0
⇒
e
x
(
1
+
x
)
=
0
⇒
x
=
−
1
Now,
d
x
2
d
2
y
=
e
x
+
e
x
(
1
+
x
)
=
e
x
(
x
+
2
)
(
d
x
2
d
2
y
)
(
x
=
−
1
)
=
e
1
+
0
>
0
Hence,
y
=
x
e
x
is minimum function and
y
m
i
n
=
−
e
1