Q.
The curve y(x)=ax3+bx2+cx+5 touches the x-axis at the point P(−2,0) and cuts the y-axis at the point Q, where y ' is equal to 3 . Then the local maximum value of y(x) is :
y(x)=ax3+bx2+cx+5 is passing through (−2,0) then 8a−4b+2c=5…… (1) y′(x)=3ax2+2bx+c touches x-axis at (−2,0) 12a−4b+c=0.....(2)
again, for x=0,y′(x)=3 c=3.....(3)
Solving eq. (1), (2) \& (3) a=−21,b=−43 y′(x)=−23x2−23x+3 y(x) has local maxima at x=1 y(1)=427