Putting y=vx and dxdy=v+xdxdv, the given equation reduces to the form v+xdxdv=2x(vx)x2+v2x2=2v1+v2⇒xdxdv=2v1+v2−v=2v1−v2 ⇒1−v22vdv=xdx⇒−log(1−v2)=logx−a ⇒log(1−v2)x=a⇒x(1−v2)=c, where c=ea
When x=2,v=21, [when x=2y=1,v=21]
so that c=23
So the equation of the curve is x2−y2=23x ⇒(x−43)2−y2=169
which is a rectangular hyperbola with eccentricity 2.
[Eccentricity of a rectangular hyperbola =2 ]