Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The curve satisfies the equation (dy/dx)=(y (x + y3)/x (y3 - x)) and passing through the point (4 , - 2) , is
Q. The curve satisfies the equation
d
x
d
y
=
x
(
y
3
−
x
)
y
(
x
+
y
3
)
and passing through the point
(
4
,
−
2
)
, is
159
166
NTA Abhyas
NTA Abhyas 2022
Report Error
A
y
2
=
−
2
x
+
12
B
2
y
=
−
x
C
y
3
=
−
2
x
D
y
2
=
x
Solution:
d
x
d
y
=
x
(
y
3
−
x
)
y
(
x
+
y
3
)
⇒
d
y
(
(
x
y
)
3
−
x
2
)
=
(
x
y
+
y
4
)
d
x
⇒
y
3
(
x
d
y
−
y
d
x
)
=
x
(
y
d
x
+
x
d
y
)
⇒
x
2
y
3
d
(
x
y
)
=
x
d
(
x
y
)
⇒
x
y
d
(
x
y
)
=
(
x
y
(
)
)
2
d
(
x
y
)
⇒
2
1
(
x
y
)
2
=
−
x
y
1
+
c
Passes through
(
4
,
−
2
)
⇒
c
=
0
So
y
3
=
−
2
x