We have, f(x)=ex⋅sinx
difference w.r.t ' x′ f′(x)=excosx+exsinx
For f′(x) is maximum we find f′′(x) f′′(x)=−exsinx+excosx+excosx+exsinx=2excosx ∴f′(x) is maximum at f′′(x)=0
Now, f′′(x)=0 ∴2excosx=0 ⇒x=2π
So, slope of tangent drawn to curve is maximum
at x=2π.