f(x)=(x−2)2/3(2x+1) f′(x)=32(x−2)−1/3(2x+1)+(x−2)2/3⋅2
Clearly f′(x) is not defined at x=2 ∴x=2 is a critical point.
Another critical point is given by f′(x)=0
i.e., 32(x−2)1/32x+1+2(x−2)2/3=0 ⇒32(2x+1)+2(x−2)=0 ⇒4x+2+6x−12=0 ⇒10x−10=0 ⇒x=0
Hence critical points are 1 and 2.