For points of intersection P&Q , solving the curves ∣∣x2−1∣∣=∣∣x2−3∣∣, we get, ⇒x2−1=3−x2 ⇒x=±2⇒P(2,1)&Q(−2,1)
For the slope of tangents at x=2 C1 is y=x2−1 dxdy=2x ⇒m1=22
And C2 is y=3−x2 dxdy=−2x ⇒m2=−22 ∴tanθ=∣∣1+m1m2m1−m2∣∣ =∣∣1−842∣∣=742 ∴cosθ=97