Given coordinate is x=a(θ+sinθ),y=a(1−cosθ)
On differentiating w.r.t. x, we get dθdx=a(1+cosθ),dθdy=a(0+sinθ) ∴dxdy=dx/dθdy/dθ=a(1+cosθ)asinθ =2cos22θ2sin2θcos2θ=tan2θ tan4π=tan2θ(∵dxdy=tanx) ⇒4π=2θ ⇒θ=2π ∴ Coordinate of P[a(2π+sin2π),a(1−cos2π)] =P[a(2π+1),a]