∣∣x+3xx+2xx+12xx+2x−13x+1∣∣=f(x)
Applying R2→R2−R1 and R3→R3−R1 f(x)=∣∣x+3−3−1x1xx+2−32x−1∣∣
Applying C1→C1−C3 and C2→C2−C3 f(x)=∣∣10−2x−241−xx+2−32x−1∣∣
Expand w.r.t. ' C1 ' f(x)=[4(2x−1)+3(1−x)] +(−2x)[6−4(x+2)] f(x)=[8x−4+3−3x]+[−2x][−4x−2] f(x)=(5x−1)+(8x2+4x) f(x)=8x2+9x−1
Hence, the constant term of quadratic equation is −1